
Module-2: Contour Integration-II

We have already considered integrands which have no poles on the real axis. Now we

consider the integrands which may have poles on the real axis as well as inside the semi-

circle CR. The poles on the real axis are excluded by detouring them with semi-circles of

small radii. This procedure is known as indenting at a point.

Jordan Inequality

If 0 ≤ θ ≤ π/2, then 2
π
≤ sin θ

θ
≤ 1. This inequality is known as Jordan’s inequality.

Proof. It will be sufficient to show that sin θ
θ

decreases as θ increases for θ ∈ [0, π/2].

This happens if

d

dθ

(
sin θ

θ

)
≤ 0 for 0 ≤ θ ≤ π

2
.

But

d

dθ

(
sin θ

θ

)
=
θ cos θ − sin θ

θ2
≤ 0 whenever θ cos θ − sin θ ≤ 0.

Since [θ cos θ − sin θ]θ=0 = 0, it is now enough to note that, on (0, π/2], the function

θ cos θ− sin θ has a non-positive derivative and so decreases as θ increases. This proves

the result.

Example 1. Evaluate
∫∞

0
sin mx
x

dx, (m > 0).

Solution. We consider the integral∫
C

eimz

z
dz =

∫
C

f(z)dz, say,

where C is the contour consisting of

(i) the real axis from r to R;

(ii) the upper half of the circle CR : | z | = R;

(iii) the real axis from −R to −r;
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Fig. 1:

(iv) the upper half of the circle Cr : | z | = r (see Fig 1.4).

Since f(z) has only singularity at z = 0 which is outside the closed contour C, by

Cauchy’s fundamental theorem we get

0 =

∫
C

f(z)dz =

∫ R

r

f(x)dx+

∫
CR

f(z)dz +

∫ −r
−R

f(x)dx+

∫
Cr

f(z)dz. (1)

On CR we have z = Reiθ, 0 ≤ θ ≤ π so that dz = iReiθdθ. Therefore using Jordan’s

inequality we deduce

|
∫
CR

f(z)dz | = |
∫ π

0

eimRe
iθ

Reiθ
· iReiθdθ | =|

∫ π

0

eimR(cos θ+i sin θ)dθ |

≤
∫ π

0

| eimR(cos θ+i sin θ) | dθ =

∫ π

0

e−mR sin θdθ

= 2

∫ π/2

0

e−mR sin θdθ ≤ 2

∫ π/2

0

e−
2mR
π

θdθ

=
π

mR

[
e−

2mR
π

θ
]0

π/2
=

π

mR
(1− e−mR)

→ 0 as R→∞.

Since z = 0 is a simple pole of f(z), f(z) has a Laurent’s series expansion near z = 0

of the form

f(z) = φ(z) +
a

z

where φ(z) is analytic at z = 0 and

a = Res(f ; 0) = lim
z→0

zf(z) = lim
z→0

eimz = 1.
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Hence ∫
Cr

f(z)dz =

∫
Cr

φ(z)dz +

∫
Cr

1

z
dz.

On Cr, z = reiθ, π ≥ θ ≥ 0 so that dz = ireiθdθ. Then∫
Cr

f(z)dz =

∫
Cr

φ(z)dz +

∫ 0

π

idθ

=

∫
Cr

φ(z)dz − iπ.

Since φ(z) is analytic at z = 0, there exist a positive number M such that | φ(z) | ≤ M

in some neighbourhood of z = 0. We choose r so small that Cr lies entirely in this

neighbourhood. Hence | φ(z) | ≤M on Cr. Therefore by ML-formula we have

|
∫
Cr

φ(z)dz | ≤M · πr → 0 as r → 0.

Thus lim
r→0

∫
Cr

f(z)dz = −iπ. Hence proceeding to the limit as r → 0 and R → ∞ we

obtain from (1) ∫ ∞
−∞

f(x)dx = iπ

i.e.

∫ ∞
−∞

eimx

x
dx = iπ

i.e.

∫ ∞
−∞

cos mx+ i sin mx

x
dx = iπ.

Equating the imaginary part in both side we obtain∫ ∞
−∞

sin mx

x
dx = π

i.e.

∫ ∞
0

sin mx

x
dx = π/2.

This completes the solution.

Integration around a branch point

Example 2. Evaluate
∫∞

0
xa−1

1+x
dx (0 < a < 1).

Solution. Let f(z) = za−1

1+z
, where za−1 denotes the principal branch of the multi-valued

function za−1. We integrate f(z) around a closed contour C consisting of

(i) L1 : z = ρei0, r ≤ ρ ≤ R;

(ii) ΓR : | z | = R;
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Fig. 2:

(iii) L2 : z = ρei2π, R ≥ ρ ≥ r;

(iv) Γr : | z | = r (see Fig 1.5).

We choose L1 and L2 sufficiently closed to the real axis so that all the poles not on the

positive real axis lie within C. By the above choice of contour C, the branch point z = 0

of za−1 that is of f(z) is avoided. Now f has only one simple pole at z = −1 which lie

inside C. Therefore by Cauchy’s residue theorem we have∫
C

f(z)dz = 2πiRes(f ;−1). (2)

Now

Res(f ;−1) = lim
z→−1

(z + 1)f(z) = lim
z→−1

za−1

= (−1)a−1 = e(a−1)πi = −eaπi.

So from (2) we obtain

−2πieaπi =

∫
L1

f(z)dz +

∫
ΓR

f(z)dz +

∫
L2

f(z)dz +

∫
Γr

f(z)dz

= I1 + I2 + I3 + I4. (3)

Now

I1 =

∫ R

r

f(ρ)dρ =

∫ R

r

ρa−1

1 + ρ
dρ =

∫ R

r

xa−1

1 + x
dx.
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I3 =

∫ r

R

ρa−1e2πi(a−1)

1 + ρe2πi
e2πidρ = −

∫ R

r

ρa−1e2πai

1 + ρ
dρ

= −e2πai

∫ R

r

xa−1

1 + x
dx.

On ΓR,

| f(z) | =| z
a−1

1 + z
| ≤ | z |a−1

| z | −1
=

Ra−1

R− 1
.

Applying ML-formula we see that

| I2 | = |
∫

ΓR

za−1

1 + z
dz | ≤ Ra−1

R− 1
· 2πR

=
2πRa

R− 1
→ 0 as R→∞ [since 0 < a < 1].

On Γr,

| f(z) | =| z
a−1

1 + z
| ≤ | z |a−1

1− | z |
=

ra−1

1− r
.

Therefore, applying ML-formula we see that

| I4 | = |
∫

Γr

za−1

1 + z
dz | ≤ ra−1

1− r
· 2πr

=
2πra

1− r
→ 0 as r → 0 [since 0 < a < 1].

So from (3) we obtain

(1− e2πai)

∫ ∞
0

xa−1

1 + x
dx = −2πieπai.

i.e.

∫ ∞
0

xa−1

1 + x
dx =

2πieπai

e2πai − 1

=
2πi

eπai − e−πai
=

π

sin πa
.

This completes the solution.

Example 3. Show by the method of contour integration∫ ∞
0

sin x2dx =

√
2π

4
=

∫ ∞
0

cos x2dx.

Solution. Let f(z) = e−z
2
. We integrate f around a closed contour C consisting of

(i) the line segment L1 : z = x, 0 ≤ x ≤ R;

(ii) the circular arc CR : z = Reiθ, 0 ≤ θ ≤ π/4;
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Fig. 3:

(iii) the line segment L2 : z = xeπi/4, R ≥ x ≥ 0 (see Fig 1.6).

Since f is analytic within and on the closed contour C, by Cauchy’s fundamental theorem

we obtain

0 =

∫
C

f(z)dz =

∫
L1

e−z
2

dz +

∫
CR

e−z
2

dz +

∫
L2

e−z
2

dz

=

∫ R

0

e−x
2

dx+

∫
CR

e−z
2

dz − eπi/4
∫ R

0

e−ix
2

dx. (4)

Now on CR, z = Reiθ, 0 ≤ θ ≤ π/4. So

|
∫
CR

e−z
2

dz | = |
∫ π/4

0

e−R
2e2iθ · iReiθdθ |

≤ R

∫ π/4

0

| e−R2(cos 2θ+i sin 2θ) | dθ

= R

∫ π/4

0

e−R
2 cos 2θdθ

=
R

2

∫ π/2

0

e−R
2 sinφdφ, φ = π/2− 2θ.

For 0 ≤ φ ≤ π/2, we get by Jordan’s inequality

2φ

π
≤ sin φ

i.e. e−R
2 sin φ ≤ e−R

2 2φ
π .
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So from above we get

|
∫
CR

e−z
2

dz | ≤ R

2

∫ π/2

0

e−R
2 2φ
π dφ

=
π

4R

(
1− 1

eR2

)
→ 0 as R→∞.

Now we consider the integral
∫∞

0
e−x

2
dx. Putting x2 = t we get∫ ∞

0

e−x
2

dx =
1

2

∫ ∞
0

e−t · t
1
2
−1dt =

Γ(1/2)

2
=

√
π

2
.

Proceeding to the limit as R→∞ we get from (4)

e
πi
4

∫ ∞
0

e−ix
2

dx =

√
π

2

i.e. (cos π/4 + i sin π/4)

∫ ∞
0

(cos x2 − i sin x2)dx =

√
π

2

i.e.

∫ ∞
0

(1 + i)(cos x2 − i sin x2)dx =

√
π

2
.

Equating the real part and imaginary part we obtain∫ ∞
0

(cos x2 + sin x2)dx =

√
π

2

and

∫ ∞
0

(cos x2 − sin x2)dx = 0.

Adding and subtracting above two equalities we obtain∫ ∞
0

sin x2dx =

√
2π

4
=

∫ ∞
0

cos x2dx.

This completes the solution.
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